正交矩阵

作者:追风剑情 发布于:2018-9-5 20:43 分类:计算机图形学

一、运算法则

若方阵M是正交的,则当且仅当M与它转置MT的乘积等于单位矩阵。

11111.png

因为矩阵乘以它的逆等于单位矩阵:MMT=I。所以,如果一个矩阵是正交的,那么它的转置等于它的逆

222.png

这是一条非常有用的性质,因为在实际应用中经常需要计算矩阵的逆,而3D图形计算中正交矩阵出现得又是如此频繁(旋转和镜像矩阵都是正交的)。如果知道矩阵是正交的,就可以完全避免计算逆矩阵了,这也将大大减少计算量。

二、几何解释

以3×3矩阵为例,检测它的正交性:

设M是3×3矩阵,根据定义,当且仅当MMT=I时M是正交的。它的确切含义如下:

3333.png

这给出了9个等式,如果M是正交的,它们必须全部成立:

4444.png

设r1,r2,r3为M的行:

555.png

6666.png

将这9个等式写得更加紧凑,有:

7777.png

现在做一些解释:

第一,当且仅当一个向量是单位向量时,它与它自身的点积结果是1。因此,仅当r1,r2,r3是单位向量时,第1、4、9式才能成立。

第二,当且仅当两个向量互相垂直时,它们的点积为零。因此,仅当r1,r2,r3互相垂直时其他等式才成立。

所以,若一个矩阵是正交的,它必须满足下列条件:
1.矩阵的每一行都是单位向量。
2.矩阵的所有行互相垂直。

       对矩阵的列也能得到类似的条件。这使得以下结论非常清楚:如果M是正交的,则MT也是正交的

       计算逆矩阵时,仅在预先知道矩阵是正交的情况下才能利用正交性的优点。如果预先不知道,那么检查正交性经常是浪费时间。即使在最好的情况下,先检查正交性以确定矩阵是否正交再进行转置,和一开始进行求逆运算也将耗费同样多的时间。而如果矩阵不是正交的,那么这种检查完全是浪费时间。

       注意,有一个术语上的差别可能会导致轻微的混淆。线性代数中,如果一组向量互相垂直,这组向量就被认为是正交基(orthogonal basis)。它只要求所有向量互相垂直,并不要求所有向量都是单位向量。如果它们都是单位向量,则称它们为标准正交基(orthonormal basis)。

三、矩阵正交化

      有时可能会遇到略微违反了正交性的矩阵。例如,可能从外部得到了坏数据,或者是浮点数运算的累积错误(称作“矩阵爬行”)。这些情况下,需要做矩阵正交化,得到一个正交矩阵,这个矩阵要尽可能地和原矩阵相同(至少希望是这样)。

      构造一组正交基向量(矩阵的行)的标准算法是施密特正交化。它的基本思想是,对每一行,从中减去它平行于已处理过的行的部分,最后得到垂直向量。

     以3×3矩阵为例,和以前一样,用r1,r2,r3代表3×3矩阵M的行。正交向量组r1',r2',r3'的计算如公式:

88888.png

3D基向量的施密特正交化

       现在r1',r2',r3'互相垂直了,它们是一组正交基。当然,它们不一定是单位向量。构造正交矩阵需要使用标准正交基,所以必须标准化这些向量。注意,如果一开始就进行标准化,而不是在第2步中做,就能避免所有除法了。

       施密特正交化是有偏差的,这取决于基向量列出的顺序。一个明显的例子是,r1总不用改变。该算法的一个改进是不在一次正交化过程中将整个矩阵完全正交化。而是选择一个小的因子k,每次只减去投影的k倍,而不是一将将投影全部减去。改进还体现在,在最初的轴上也减去投影。这种方法避免了因为运算顺序不同带来的误差。算法总结如下:

9999.png

      该算法的每次迭代都会使这些基向量比原来的基向量集更为正交化,但可能不是完全正交的,多次重复这个过程,最终将得到一组正交基。要得到完美的结果,就得选择一个适当的因子k并迭代足够多次(如,10次)。接着,进行标准化,最后就会得到一组标准正交基。

标签: 计算机图形学

Powered by emlog  蜀ICP备18021003号-1   sitemap

川公网安备 51019002001593号