计算几何

作者:追风剑情 发布于:2018-1-7 14:16 分类:Algorithms

示例代码

  1. using System;
  2. using System.Collections.Generic;
  3.  
  4. namespace Geometry
  5. {
  6. /// <summary>
  7. /// 计算几何类
  8. /// 封装了计算几何的基本算法:
  9. /// 点与矩形的关系、点与圆的关系、点与直线的关系、直线与直线的关系、点与多边形的关系
  10. /// </summary>
  11. public class ComputationGeometry
  12. {
  13. public static double Epsilon = 0.00000001;//1E-8精度
  14.  
  15. // 判断一个点是否在矩形内
  16. public static bool IsPointInRect(Point p, Rect rc)
  17. {
  18. double xr = (p.x - rc.p1.x) * (p.x - rc.p2.x);
  19. double yr = (p.y - rc.p1.y) * (p.y - rc.p2.y);
  20. return (xr <= 0.0) && (yr <= 0.0);
  21. }
  22.  
  23. // 判断两个矩形是否相交
  24. public static bool IsRectIntersect(Rect rc1, Rect rc2)
  25. {
  26. return (Math.Max(rc1.p1.x, rc1.p2.x) >= Math.Min(rc2.p1.x, rc2.p2.x))
  27. && (Math.Max(rc2.p1.x, rc2.p2.x) >= Math.Min(rc1.p1.x, rc1.p2.x))
  28. && (Math.Max(rc1.p1.y, rc1.p2.y) >= Math.Min(rc2.p1.y, rc2.p2.y))
  29. && (Math.Max(rc2.p1.y, rc2.p2.y) >= Math.Min(rc1.p1.y, rc1.p2.y));
  30. }
  31.  
  32. // 判断一个点是否在圆内
  33. public static bool IsPointInCircle(Point p, Point o, double r)
  34. {
  35. double d = PointDistance(p, o);
  36. return d <= r;
  37. }
  38.  
  39. // 判断一个点是否在线段上
  40. public static bool IsPointOnLineSegment(Point p, LineSegment ls)
  41. {
  42. Rect rc = GetLineSegmentRect(ls);
  43. //如果线段所表示的矢量和点的矢量的叉积是0,就说明点在线段所在的直线上
  44. double cp = CrossProduct(ls.pe.x - ls.ps.x, ls.pe.y - ls.ps.y,
  45. p.x - ls.ps.x, p.y - ls.ps.y);
  46. return IsPointInRect(p, rc) //排除实验
  47. && IsZeroFloatValue(cp);//1E-8精度
  48. }
  49.  
  50. // 判断两条线段的包围盒是否排斥 true:不相交
  51. private static bool IsLineSegmentExclusive(LineSegment ls1, LineSegment ls2)
  52. {
  53. Rect rc1 = GetLineSegmentRect(ls1);
  54. Rect rc2 = GetLineSegmentRect(ls2);
  55. return !IsRectIntersect(rc1, rc2);
  56. }
  57.  
  58. // 判断两条线段是否相交
  59. public static bool IsLineSegmentIntersect(LineSegment ls1, LineSegment ls2)
  60. {
  61. //排斥实验
  62. if (IsLineSegmentExclusive(ls1, ls2)) {
  63. return false;
  64. }
  65.  
  66. //(P1 - Q1)×(Q2 - Q1)
  67. double p1xq = CrossProduct(ls1.ps.x - ls2.ps.x, ls1.ps.y - ls2.ps.y,
  68. ls2.pe.x - ls2.ps.x, ls2.pe.y - ls2.ps.y);
  69. //(P2 - Q1)×(Q2 - Q1)
  70. double p2xq = CrossProduct(ls1.pe.x - ls2.ps.x, ls1.pe.y - ls2.ps.y,
  71. ls2.pe.x - ls2.ps.x, ls2.pe.y - ls2.ps.y);
  72. //(Q1 - P1)×(P2 - P1)
  73. double q1xp = CrossProduct(ls2.ps.x - ls1.ps.x, ls2.ps.y - ls1.ps.y,
  74. ls1.pe.x - ls1.ps.x, ls1.pe.y - ls1.ps.y);
  75. //(Q2 - P1)×(P2 - P1)
  76. double q2xp = CrossProduct(ls2.pe.x - ls1.ps.x, ls2.pe.y - ls1.ps.y,
  77. ls1.pe.x - ls1.ps.x, ls1.pe.y - ls1.ps.y);
  78. //跨立实验
  79. return (p1xq * p2xq <= 0.0) && (q1xp * q2xp <= 0.0);
  80. }
  81.  
  82. // 获取线段的矩形包围盒
  83. public static Rect GetLineSegmentRect(LineSegment ls)
  84. {
  85. Rect rc = new Rect();
  86. rc.p1 = ls.ps;
  87. rc.p2 = ls.pe;
  88. return rc;
  89. }
  90.  
  91. /// <summary>
  92. /// 判断点是否在多边形内
  93. /// </summary>
  94. /// <param name="polygon">边数组</param>
  95. /// <returns></returns>
  96. public static bool IsPointInPolygon(Point p, Polygon polygon)
  97. {
  98. if (!polygon.IsValid())
  99. throw new ArgumentException("无效多边形");
  100.  
  101. int count = 0;//记录射线与多边形的交点个数
  102. //创建一条从P点出发向左的最大线段P1P2
  103. LineSegment ll = new LineSegment();
  104. ll.ps = p;
  105. ll.pe = new Point(-1000, p.y);//这里的x值应该根据多边形的包围盒计算得到
  106. LineSegment edge;
  107. for (int i = 0; i < polygon.edges.Count; i++ )
  108. {
  109. edge = polygon.edges[i];
  110. if (IsPointOnLineSegment(p, edge)) {
  111. return true;
  112. }
  113.  
  114. //如果edge与P1P2平行,则忽略这条边,
  115. //如果平行,要么交点为0个,要么有无数个。
  116. if (edge.IsHorizontal())
  117. continue;
  118.  
  119. //当P1P2与多边形的顶点相交时,此时交点会被计算两次
  120. //这种情况的处理原则是:
  121. //如果P的y坐标与P1、P2中较小的y坐标相同,则忽略这个交点。
  122. if (IsSameFloatValue(edge.ps.y, p.y) && edge.ps.y > edge.pe.y)
  123. {
  124. count++;
  125. }
  126. else if (IsSameFloatValue(edge.pe.y, p.y) && edge.pe.y > edge.ps.y)
  127. {
  128. count++;
  129. }
  130. else
  131. {
  132. if (IsLineSegmentIntersect(edge, ll))
  133. {
  134. count++;
  135. }
  136. }
  137. }
  138. return (count % 2) == 1;//交点个数为奇数时表示点在多边形内
  139. }
  140.  
  141. // 计算两点间距离
  142. private static double PointDistance(Point p1, Point p2)
  143. {
  144. return Math.Sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
  145. }
  146.  
  147. // 计算三角形面积
  148. public static double CalculateTriangleArea(Triangle triangle)
  149. {
  150. return CalculateTriangleArea(triangle.p0, triangle.p1, triangle.p2);
  151. }
  152.  
  153. public static double CalculateTriangleArea(Point p0, Point p1, Point p2)
  154. {
  155. Vector2 v01 = Vector2.Create(p0, p1);
  156. Vector2 v02 = Vector2.Create(p0, p2);
  157. double s = CrossProduct(v01.x, v01.y, v02.x, v02.y) / 2;
  158. return s;
  159. }
  160.  
  161. // 判断一个点是否在三角形内
  162. public static bool IsPointInTriangle(Point p, Triangle triangle)
  163. {
  164. double s012 = CalculateTriangleArea(triangle);
  165. double s01p = CalculateTriangleArea(triangle.p0, triangle.p1, p);
  166. double s02p = CalculateTriangleArea(triangle.p0, triangle.p2, p);
  167. double s12p = CalculateTriangleArea(triangle.p1, triangle.p2, p);
  168. return s01p + s02p + s12p <= s012;
  169. }
  170.  
  171. // 是否近似0
  172. private static bool IsZeroFloatValue(double d)
  173. {
  174. return d > -Epsilon && d < Epsilon;
  175. }
  176.  
  177. // 是否相等
  178. private static bool IsSameFloatValue(double d1, double d2)
  179. {
  180. return Math.Abs(d1 - d2) < Epsilon;
  181. }
  182.  
  183. /**
  184. * 点积(内积)
  185. * (P, Q)表示向量P和Q的夹角。
  186. *
  187. * 如果P和Q不共线,则:
  188. * P·Q > 0,则P和Q的夹角是钝角(大于90度)
  189. * P·Q < 0,则P和Q的夹角是锐角(小于90度)
  190. * P·Q = 0,则P和Q的夹角是90度
  191. */
  192. private static double DotProduct(double x1, double y1, double x2, double y2)
  193. {
  194. return x1 * x2 + y1 * y2;
  195. }
  196.  
  197. /**
  198. * 叉积(外积)
  199. * P×Q = -(Q×P)
  200. *
  201. * 几何意义:
  202. * P×Q为所构成的平行四边行的面积。
  203. *
  204. * 方向:
  205. * P×Q的方向是垂直于P和Q所在的平面(右手坐标系)
  206. *
  207. * 性质:
  208. * 判断两矢量相互之间的位置关系
  209. * P×Q > 0,则Q在P的逆时针方向
  210. * P×Q < 0,则Q在P的顺时针方向
  211. * P×Q = 0,则Q与P共线
  212. */
  213. private static double CrossProduct(double x1, double y1, double x2, double y2)
  214. {
  215. return x1 * y2 - x2 * y1;
  216. }
  217. }
  218.  
  219. public class Point
  220. {
  221. public double x;
  222. public double y;
  223.  
  224. public Point(double x, double y)
  225. {
  226. this.x = x;
  227. this.y = y;
  228. }
  229. }
  230.  
  231. public class Vector2
  232. {
  233. public double x;
  234. public double y;
  235.  
  236. public static Vector2 Create(Point p0, Point p1)
  237. {
  238. Vector2 v = new Vector2();
  239. v.x = p1.x - p0.x;
  240. v.y = p1.y - p0.y;
  241. return v;
  242. }
  243. }
  244.  
  245. public class Rect
  246. {
  247. public Point p1;
  248. public Point p2;
  249. }
  250.  
  251. public class Triangle
  252. {
  253. public Point p0;
  254. public Point p1;
  255. public Point p2;
  256. }
  257.  
  258. public class LineSegment
  259. {
  260. public Point ps;
  261. public Point pe;
  262.  
  263. //是否为水平线段
  264. public bool IsHorizontal()
  265. {
  266. return Math.Abs(pe.y - ps.y) < 0.00000001;
  267. }
  268. }
  269.  
  270. public class Polygon
  271. {
  272. public List<LineSegment> edges;
  273.  
  274. // 判断是否为合法的多边形
  275. public bool IsValid()
  276. {
  277. return true;
  278. }
  279. }
  280. }

标签: Algorithms

Powered by emlog  蜀ICP备18021003号-1   sitemap

川公网安备 51019002001593号